R SHINY WORKSHOP

Introduction to Luminex

Dr Fiona Angrisano

xMAP: Multiplexing Technology

xMAP technology allows users to perform a wide range of protein-and nucleic acid-based multiplex assays which can simultaneously detect up to 500 targets in a single run

Advantages of xMAP technology

- Test for more biomarkers
- Develop custom assays
- Use less sample
- Save time and reagents
- Gain a better understanding of complex biological systems

What is multiplexing? Multiplexing is a method for high-volume biomarker testing – or testing multiple analytes simultaneously within a single run using a single sample volume. xMAP technology is best-suited for testing 3-500 targets

xMAP: Multiplexing Technology

How does xMAP technology work? xMAP technology uses labeled microspheres or beads, allowing for the simultaneous capture of multiple analytes from a single reaction. Because of their small size and low-density microspheres-based assay exhibit virtual solution phase kinetics during the reaction i.e., the beads are individually read using an xMAP instrument

What does xMAP mean? Multi-Analyte Profiling, where the 'x' represents the biomarkers (such as proteins, nucleic acids, or polysaccharides) that are being tested

xMAP Beads come in a variety of formats, including magnetic and non-magnetic. xMAP beads pass through a red laser, or LED, which excites the internal dyes to distinguish the microsphere set. Then, a green laser or LED excites the fluorescent reporter dye to determine the result of the assay

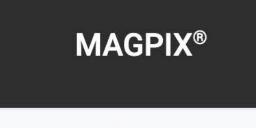
xMAP Technology: The Science

Magpix is the simplest and most affordable of Luminex's xMAP instruments

Compact multiplexing unit performs up to 50 different tests in a single reaction volume and reads a 96 well plate in just 60minutes

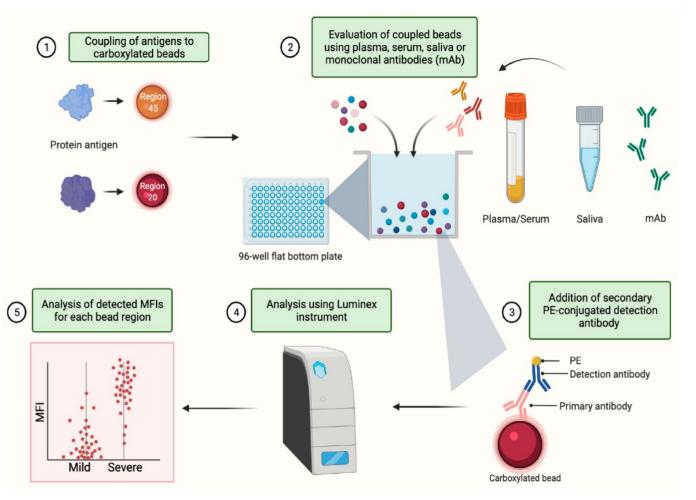
Key Features:

Multiplexing up to 50 analytes per sample


Sensitivity: approximately 10^6 copies of DNA or single-digit picogram levels of protein

Selection: flexibility of panels and formats

Read time: 96 well plate <60 minutes (up to 4,800 tests/hour)


Daily start-up/Shut-Down: <15minutes

Footprint: 3 ft linear bench space

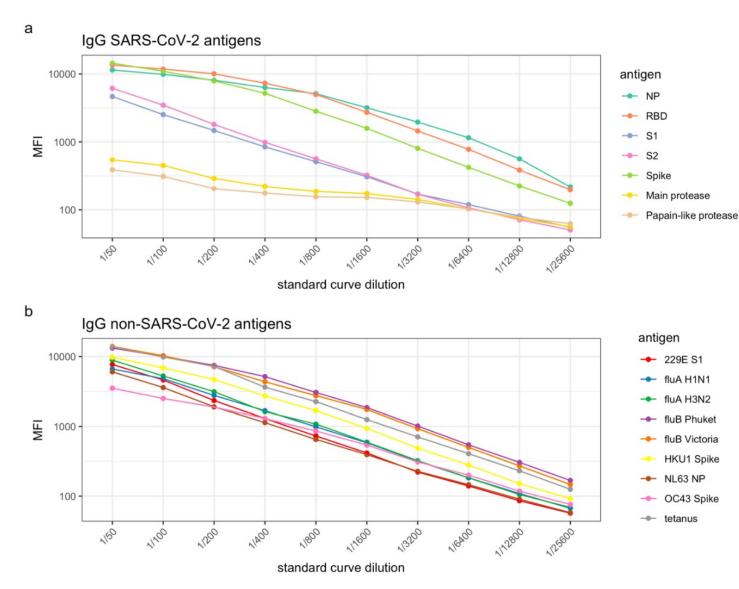
The assay

Luminex protocol involves several steps:

- 1. Coupling of antigens to carboxylated beads
- 2. Evaluation of coupled beads using plasma, serum, saliva or monoclonal antibodies
- 3. Addition of PE-conjugated secondary antibody (detector antibody)
- 4. Analysis on Luminex instrument
- 5. Analysis of detected MFIs for each bead region

The assay – bead coupling

1 Coupling of antigens to carboxylated beads f(t) Region 45 Protein antigen f(t) Region 20 f(t) Protein 20 Optimal protein amount to couple to magnetic beads is first determined


All proteins initially coupled 6.25 x 10^5 pre-activated beads at various protein concentrations (trial coupling)

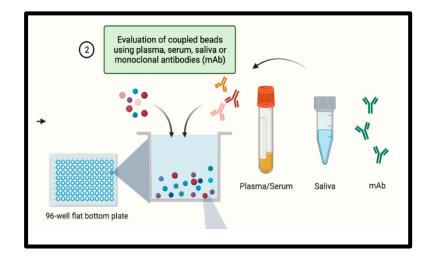
The optimum antigen concentration is then determined by observing what concentration of protein resulted in a log-linear standard curve using the convalescence plasma

This is important in achieving an optimal dynamic range to be able to measure a wide range of different concentrations whilst measuring all samples at the same dilution

Once determined, we perform a bulk coupling 2.5 x 10^6 pre-activated beads (can be used for 3000 samples)

The assay – bead coupling

Standard curves for SARS-CoV-2 antigens and other antigens in human plasma, such as respiratory viruses and human seasonal coronaviruses

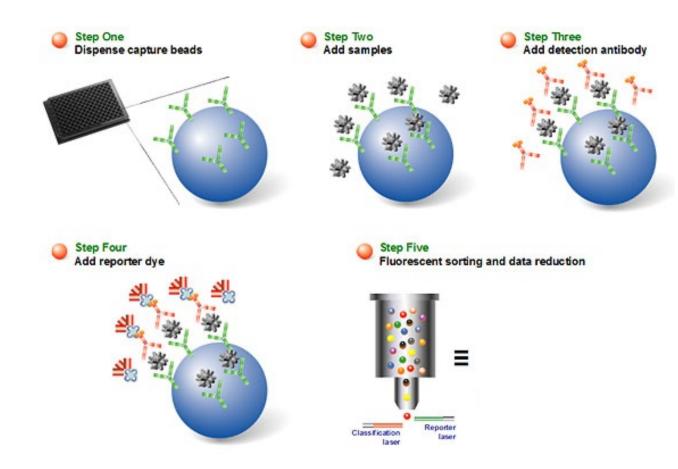

Levels of IgG antibodies are presented as median fluorescence intensity (MFI) values

Plasmausedconsistsofconvalescentplasmafrom10SARS-CoV-2qPCRpositiveindividualscollectedapproximately30daysonset of symptoms

Covid Panel

Pathogen	Antigen region	Description
SARS-CoV-2	S1	SARS-CoV-2-Spike Glycoprotein (S1), recombinant antigen AA 1–674
SARS-CoV-2	S2	SARS-CoV-2-Spike Glycoprotein (S2) recombinant antigen AA 685-1211
SARS-CoV-2	NP	SARS-CoV-2 Nucleocapsid protein, full length AA 1-419
SARS-CoV-2	RBD	SARS-CoV-2-Receptor Binding Domain (RBD) of S1
SARS-CoV-2	Spike (trimer)	SARS-CoV-2 Full length Spike trimer
HCoV-NL63	NP	Recombinant c-terminal NP, contains 130 AA
HCoV-229E	S1	Recombinant S1 subunit, AA 19-717
HCoV-HKU1	Spike	In house from collaborator
HCoV-OC43	S1+S2+ECD	Recombinant Spike protein (S1 + S2 + ECD), AA 1-1304
IVB Vic 02/1987	Hemagglutinin	Influenza B HA1, AA 1-362
Tetanus Toxoid		Clostridium tetani (formaldehyde inactivation)

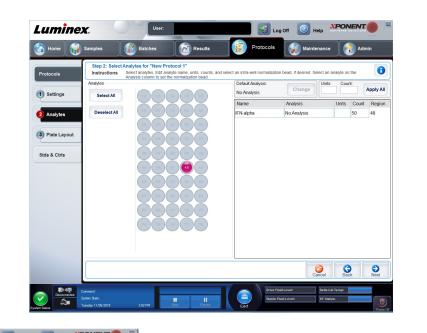
The assay – plate setup

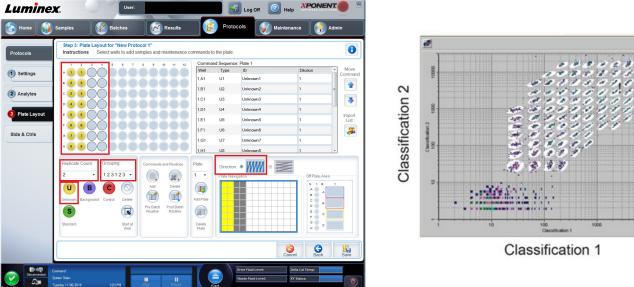

	1	2	3	4	5	6	7	8	9	10	11	12
A	Blank	Naïve 1/100	Pos. 1/50	Pos. 1/100	Pos. 1/200	Pos. 1/400	Pos. 1/800	Pos. 1/160 0	Pos. 1/320 0	Pos. 1/640 0	Pos. 1/128 00	Pos. 1/25600
В	Blank											
С												
D												
Ε												
F												
G												
Н												

How you label your plate for your own reference will be different to how the plate NEEDS to be labelled for R.

Things to consider when setting up cohort:

- Antigen nomenclature be consistent throughout study
- Bead IDs used for each antigen again try and stay consistent throughout study
- Determine study size and make enough bead/antigen coupling at the beginning


The assay – IgG Ab protocol



- 1. Beads conjugated to antigen are dispensed into the appropriate wells
- 2. Samples are added in singlicate. Standard curve is added as serial dilution. Incubate RT in the dark
- 3. Wash unbound antibodies
- 4. Detector antibody added. In our assay the detector antibody is already coupled to a reporter dye so steps 3 and 4 are combined. Incubate RT in the dark
- 5. Wash unbound antibodies and resuspend ready for magpix

The assay – at the machine

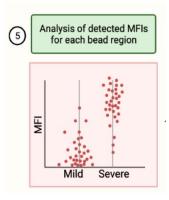
Prior to putting your plate on the machine, you need to ensure the machine is on and primed for running:

- Enhanced startup protocol
- Adjust probe height
- Calibrate system with kit
- Verify system with kit
- Ensure wash buffer and waste levels are ok
- Pick bead regions

EP 1

- Setup protocol no controls
- Only use blank and unknown buttons for 'in house' assay's

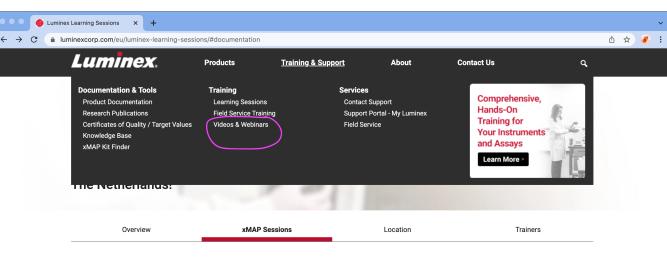
The assay – raw data


A	В		D	E		G	н			к		м	N
DataType:	Median												
Location	Sample	IVB-Vict_21	Tetox_26	CS1H-NA_28	CS2H-NA_45	CNPH-Ac_46	CRBDH-WT_57	CSpike H_62	NL63NPEc_65	OC43_66	229ES1H_77	HKU1Spike_78	Total Events
1(1,A1)	Blank 1	12	11	58	43	7	13	8	14	13	16	14	916
2(1,A2)	unknown1	2168.5	4388	133.5	129	242	116.5	123	611	1228	1792	1877.5	1143
3(1,A3)	S1	554	5194	4619.5	3899.5	11352	5815	10318	203	5956	2935.5	7591	868
4(1,A4)	S2	285.5	2995	2850	2768	10029	4448	8065	103	4941.5	1718	5226	986
5(1,A5)	53	157	1748	1734.5	1828	8388	2801	5578.5	59	3645	927	3055	108
6(1,A6)	S4	82	1015.5	947	1060	6550	1623	3124	39	2389	494	1630	98
7(1,A7)	S5	53	611.5	549	633	5135	963	1884	29	1517	268.5	968	117
8(1,A8)	S6	33	287	300.5	372.5	3607	463	1011	22	882	147	510	865
9(1,A9)	\$7	22	158.5	175	227	1849.5	209	520	17	469.5	82	263	1029
10(1,A10)	S8	17	99	115	137.5	1088	118	265	17	259	48	138.5	980
11(1,A11)	S9	15	50	87	89	559	62	127	16	148	32	78	1076
12(1,A12)	S10	14	33	71.5	63	308	36	66	15	79	25	48	1223
13(1,B1)	Blank 2	11	12	64	38	8	14	9	14	14	16	13	918
14(1,B2)	Unknown1	128.5	63.5	71	63.5	41	42	23	262	115	110	38	893
15(1,B3)	Unknown2	182.5	46	66	59	34	37.5	24	196	255	123	74	83
16(1,B4)	Unknown3	96	103	69	60.5	34	41	23	283	261	248	208	790
17(1,B5)	Unknown4	55	104	68	62	36	36	20.5	208	51	49.5	45	950
18(1,B6)	Unknown5	59	169.5	68	62	32	38	24	207	112.5	307	93	884
19(1,B7)	Unknown6	231	39	65	76	41	34	21	215.5	424	137	134	1060
20(1,B8)	Unknown7	54	173	67	72	85	47	28	369.5	228	154	255	1060
21(1,B9)	Unknown8	243	68	59.5	100	764.5	32	20	274.5	453	425.5	484	1020
22(1,B10)	Unknown9	125	43.5	64	125	176.5	33	38	254	267	236	307	821
23(1,B11)	Unknown10	76	376	67.5	62	1017	47	24	283.5	303	178.5	153	824
24(1,B12)	Unknown11	173	314	93	105.5	457.5	90.5	52	502.5	135	139	252	916
25(1,C1)	Unknown12	579.5	512	82	82	59.5	64.5	32	276	332	258.5	290	840
26(1,C2)	Unknown13	107	99	77	77	48	54	90	550	203	296	118.5	743
27(1,C3)	Unknown14	218	601	62.5	59	39.5	42	23.5	264	176	263	78.5	716
28(1,C4)	Unknown15	42	50.5	70.5	58.5	33	40	22	259	277.5	31	224	732
29(1,C5)	Unknown16	192	387.5	62.5	58	32	29	23.5	186	333	308	827	845
30(1,C6)	Unknown17	448.5	71	60	61	67	40	23	227	162	141	84.5	774
31(1,C7)	Unknown18	159.5	77	65	55	825.5	32	22	182	229	254	423.5	1048
32(1,C8)	Unknown19	421	77	64.5	57	34	35	21	183	218	152	418	88
33(1,C9)	Unknown20	239	269	62.5	57	32	34	29	190	246	346	272	903
34(1,C10)	Unknown21	106	81.5	62	67	51	49	26	371.5	165	117	379.5	949
35(1,C11)	Unknown22	126.5	419	63	49	22	25.5	14	131.5	147	242.5	206	74:
36(1,C12)	Unknown23	180	36.5	62	58	24	30	22	196	341	118	233	923
37(1,D1)	Unknown24	102	85	74	63	44	37	24	203	97.5	106	176	90:
38(1,D2)	Unknown25	165	126.5	66	61.5	31.5	37	26	206	174	104.5	139	72
39(1,D3)	Unknown26	126	115	72	68	58	49	44	348	546.5	656	312	59
40(1,D4)	Unknown27	95	442.5	73.5	82.5	722	59	37.5	741	186	111	73	79
41(1,D5)	Unknown28	97	432.5	75	85	636.5	61	33	734	189	118	76	83
42(1,D6)	Unknown29	137	1663	58	50	26	29.5	17	173.5	110	98	111	74

Could assesses along along 2 00

4	A	В	с	D	E	F	G	н	1	L	к	L	м
1	Plate	1	2	3	4	5	6	7	8	9	10	11	12
2	Α	Blank 1	Control	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10
3	В	Blank 2											
4	С												
5	D												
6	E												
7	F												
8	G												
9	н												
10								3					

Results should be saved as an excel document


- Keep nomenclature consistent throughout. Start as you mean to continue
- Ensure no spaces in antigen names
- If running multiple blanks, ensure they are numbered sequentially

Thank you - Questions

Fiona.angrisano@burnet.edu.au

https://www.luminexcorp.com/eu/luminex-learning-sessions/#documentation

Agenda (CET+1)

xMAP[®] Luminex Learning Sessions

xMAP® Luminex Learning Sessions are currently scheduled to return in 2022. View upcoming courses below.

Assay Development Classroom Trainings

https://www.luminexcorp.com/eu/support/ 1 Eurodomontals of vMAD® Protoomia Accourt (CNI 0.100 0.1)